

 Navigation

 	
 index

 	
 next |

 	django-cron 0.3.5 documentation

Welcome to django-cron’s documentation!

[image: https://travis-ci.org/Tivix/django-cron.png]
 [https://travis-ci.org/Tivix/django-cron][image: https://coveralls.io/repos/Tivix/django-cron/badge.png]
 [https://coveralls.io/r/Tivix/django-cron?branch=master][image: https://readthedocs.org/projects/django-cron/badge/?version=latest]
 [https://readthedocs.org/projects/django-cron/?badge=latest]Contents:

	Introduction

	Installation

	Configuration

	Sample Cron Configurations
	Retry after failure feature

	Run at times feature

	Allowing parallels runs

	FailedRunsNotificationCronJob

	Locking backend
	Cache Lock

	File Lock

	Custom Lock

	Changelog
	0.4.3

	0.4.2

	0.4.1

	0.4.0

	0.3.6

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.9

	0.2.8

	0.2.7

	0.2.6

	0.2.5

	0.2.4

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cron 0.3.5 documentation

Introduction

Django-cron lets you run Django/Python code on a recurring basis proving basic plumbing to track and execute tasks. The 2 most common ways in which most people go about this is either writing custom python scripts or a management command per cron (leads to too many management commands!). Along with that some mechanism to track success, failure etc. is also usually necesary.

This app solves both issues to a reasonable extent. This is by no means a replacement for queues like Celery (http://celeryproject.org/) etc.

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cron 0.3.5 documentation

Installation

	Install django_cron (ideally in your virtualenv!) using pip or simply getting a copy of the code and putting it in a directory in your codebase.

	Add django_cron to your Django settings INSTALLED_APPS:

INSTALLED_APPS = [
 # ...
 "django_cron",
]

	Run python manage.py migrate django_cron

	Write a cron class somewhere in your code, that extends the CronJobBase class. This class will look something like this:

from django_cron import CronJobBase, Schedule

class MyCronJob(CronJobBase):
 RUN_EVERY_MINS = 120 # every 2 hours

 schedule = Schedule(run_every_mins=RUN_EVERY_MINS)
 code = 'my_app.my_cron_job' # a unique code

 def do(self):
 pass # do your thing here

	Add a variable called CRON_CLASSES (similar to MIDDLEWARE_CLASSES etc.) thats a list of strings, each being a cron class. Eg.:

CRON_CLASSES = [
 "my_app.cron.MyCronJob",
 # ...
]

	Now everytime you run the management command python manage.py runcrons all the crons will run if required. Depending on the application the management command can be called from the Unix crontab as often as required. Every 5 minutes usually works for most of my applications, for example:

> crontab -e
*/5 * * * * source /home/ubuntu/.bashrc && source /home/ubuntu/work/your-project/bin/activate && python /home/ubuntu/work/your-project/src/manage.py runcrons > /home/ubuntu/cronjob.log

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cron 0.3.5 documentation

Configuration

CRON_CLASSES - list of cron classes

DJANGO_CRON_LOCK_BACKEND - path to lock class, default: django_cron.backends.lock.cache.CacheLock

DJANGO_CRON_LOCKFILE_PATH - path where to store files for FileLock, default: /tmp

DJANGO_CRON_LOCK_TIME - timeout value for CacheLock backend, default: 24 * 60 * 60 # 24 hours

DJANGO_CRON_CACHE - cache name used in CacheLock backend, default: default

DJANGO_CRON_DELETE_LOGS_OLDER_THAN - integer, number of days after which log entries will be clear (optional - if not set no entries will be deleted)

For more details, see Sample Cron Configurations and Locking backend

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cron 0.3.5 documentation

Sample Cron Configurations

Retry after failure feature

You can run cron by passing RETRY_AFTER_FAILURE_MINS param.

This will re-runs not next time runcrons is run, but at least RETRY_AFTER_FAILURE_MINS after last failure:

class MyCronJob(CronJobBase):
 RUN_EVERY_MINS = 60 # every hours
 RETRY_AFTER_FAILURE_MINS = 5

 schedule = Schedule(run_every_mins=RUN_EVERY_MINS, retry_after_failure_mins=RETRY_AFTER_FAILURE_MINS)

Run at times feature

You can run cron by passing RUN_EVERY_MINS or RUN_AT_TIMES params.

This will run job every hour:

class MyCronJob(CronJobBase):
 RUN_EVERY_MINS = 60 # every hours

 schedule = Schedule(run_every_mins=RUN_EVERY_MINS)

This will run job at given hours:

class MyCronJob(CronJobBase):
 RUN_AT_TIMES = ['11:30', '14:00', '23:15']

 schedule = Schedule(run_at_times=RUN_AT_TIMES)

Hour format is HH:MM (24h clock)

You can also mix up both of these methods:

class MyCronJob(CronJobBase):
 RUN_EVERY_MINS = 120 # every 2 hours
 RUN_AT_TIMES = ['6:30']

 schedule = Schedule(run_every_mins=RUN_EVERY_MINS, run_at_times=RUN_AT_TIMES)

This will run job every 2h plus one run at 6:30.

Allowing parallels runs

By deafult parallels runs are not allowed (for security reasons). However if you
want enable them just add:

ALLOW_PARALLEL_RUNS = True

in your CronJob class.

Note

Note this requires a caching framework to be installed, as per https://docs.djangoproject.com/en/dev/topics/cache/

If you wish to override which cache is used, put this in your settings file:

DJANGO_CRON_CACHE = 'cron_cache'

FailedRunsNotificationCronJob

This example cron check last cron jobs results. If they were unsuccessfull 10 times in row, it sends email to user.

Install required dependencies: ‘Django>=1.5.0’, ‘South>=0.7.2’, ‘django-common>=0.5.1’.

Add ‘django_cron.cron.FailedRunsNotificationCronJob’ to your CRON_CLASSES in settings file.

To set up minimal number of failed runs set up MIN_NUM_FAILURES in your cron class (default = 10). For example:

	class MyCronJob(CronJobBase):

	RUN_EVERY_MINS = 10
MIN_NUM_FAILURES = 3

schedule = Schedule(run_every_mins=RUN_EVERY_MINS)
code = ‘app.MyCronJob’

	def do(self):

	... some action here ...

Emails are imported from ADMINS in settings file

To set up email prefix, you must add FAILED_RUNS_CRONJOB_EMAIL_PREFIX in your settings file (default is empty). For example:

FAILED_RUNS_CRONJOB_EMAIL_PREFIX = “[Server check]: ”
FailedRunsNotificationCronJob checks every cron from CRON_CLASSES

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-cron 0.3.5 documentation

Locking Backend

You can use one of two built-in locking backends by setting DJANGO_CRON_LOCK_BACKEND with one of:

	django_cron.backends.lock.cache.CacheLock (default)

	django_cron.backends.lock.file.FileLock

Cache Lock

This backend sets a cache variable to mark current job as “already running”, and delete it when lock is released.

File Lock

This backend creates a file to mark current job as “already running”, and delete it when lock is released.

Custom Lock

You can also write your custom backend as a subclass of django_cron.backends.lock.base.DjangoCronJobLock and defining lock() and release() methods.

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	django-cron 0.3.5 documentation

Changelog

0.4.3

	Added DJANGO_CRON_DELETE_LOGS_OLDER_THAN setting to allow automated log clearing.

0.4.2

	Fix for #57 (ignoring Django timezone settings)

0.4.1

	Added get_prev_success_cron method to Schedule (Issue #26)

	Improvements to Admin interface (PR #42)

0.4.0

	Added support for Django 1.8

	Minimum Django version required is 1.7

	Dropped South in favor of Django migrations

	WARNING! When upgrading you might need to remove existing South migrations, read more: https://docs.djangoproject.com/en/1.7/topics/migrations/#upgrading-from-south

0.3.6

	Added Django 1.7 support

	Added python3 support

0.3.5

	Added locking backends

	Added tests

0.3.4

	Added CRON_CACHE settings parameter for cache select

	Handle database connection errors

	Upping requirement to Django 1.5+

0.3.3

	Python 3 compatibility.

0.3.2

	Added database connection close.

	Added better exceptions handler.

0.3.1

	Added index_together entries for faster queries on large cron log db tables.

	Upgraded requirement hence to Django 1.5 and South 0.8.1 since index_together is new to Django 1.5

0.3.0

	Added Django 1.4+ support. Updated requirements.

0.2.9

	Changed log level to debug() in CronJobManager.run() function.

0.2.8

	Bug fix

	Optimized queries. Used latest() instead of order_by()

0.2.7

	Bug fix.

0.2.6

	Added end_time to list_display in CronJobLog admin

0.2.5

	Added a helper function (run_cron_with_cache_check) in runcrons.py

0.2.4

	Capability to run specific crons using the runcrons management command. Useful when in the list of crons there are few slow onces and you might want to run some quicker ones via a separate crontab entry to make sure they are not blocked / slowed down.

	pep8 cleanup and reading from settings more carefully (getattr).

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	django-cron 0.3.5 documentation

Index

 Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		django-cron 0.3.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Tivix Inc..
 Created using Sphinx 1.3.1.

_static/down.png

